Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene Antonio Tinoco, Viktoria Steck, Vikas Tyagi, and Rudi Fasan J. Am. Chem Soc. 2017, **139**, 5293 ### Trifluoromethyl cyclopropane derivatives Conformational Rigidity – important feature in biologically active compounds. - -CF₃ analogues impart important biological activity - Increase electrophilicity and decrease nucleophilicity of neighbouring functional groups - 2) Modifies lipophilicity - 3) Increase metaboloc stability Trifluoromethylated cyclopropane is considered to be a bioisostere of fluorinated tert-butyl group $$CI$$ N N N N S F_3C cannabinoid CB₁ receptor antagonist $IC_{50} = 33.5 \text{ nM}$ $hNa_v 1.7$ channel blocker $IC_{50} = 182 \text{ nM}$ VLA-4 integrin antagonist $IC_{50} = 2 \text{ nM}$ $$F_3C \cap NH_3CI \xrightarrow{NaNO_2} HCI \\ 0^{\circ}C \\ F_3C \cap N_2 \xrightarrow{hv} F_3C \xrightarrow{F_3C} Or \xrightarrow{CF_3} \\ 0^{\circ}C \\$$ $$F_3C$$ + F_3C 7% F_3C N_2 F_3C F J. Chem. Soc. C. 1967, 1450 Synthesis 2006, 2006, 1701 Angew. Chem. Int. Ed. 2011, **50**, 1101 #### Metal porphyrin catalysed cyclopropanations $$\begin{array}{c} \xrightarrow{\text{EtOOC} \nearrow N_2} \\ \xrightarrow{\text{catalyst}} \\ \text{Rh - cis} \\ \text{Fe - trans} \end{array}$$ Tetrahedron Lett. 1980, 21, 3489 J. Am. Chem. Soc. 1995, 117, 9194 – 9199 J. Am. Chem. Soc. 1995, 117, 9194 – 9199 J. Am. Chem. Soc. 1995, 117, 9194 – 9199 ## **Engineered Myoglobin catalysts** Angew. Chem. Int. Ed. 2015, 54, 1744 Angew. Chem. Int. Ed. 2015, 54, 1744 | entry | catal. | prod. | equiv 4 or 5 ^b | yield ^c | TON | % de | % ee | |-------|--------------------------|-------|---------------------------|--------------------|------|------|------| | 1 | protein | 6 | 2 | 4% | 180 | 99.9 | 99.8 | | 2 | cells^d | 6 | 2 | 47% | 560 | 97.2 | 99.9 | | 3 | cells | 6 | 5 | 80% | 365 | 99.9 | 99.8 | | 4 | cells | 6 | 10 | 75% | 340 | 98.5 | 99.9 | | 5 | cells | 6 | 10 | >99% ^e | 500 | 99.9 | 99.9 | | 6 | protein | 7b | 5 | 22% | 1110 | 98.5 | 99.9 | | 7 | cells | 7b | 5 | 92% | 520 | 99.9 | 99.9 | | | | | | (67%) | | | | | Mb Variant | <i>p</i> -methoxy-styrene
+ EDA ^a | | <i>p</i> -methoxy-styrene
+ DTE ^b | | ∆(%de) | Δ (%ee) | |----------------|---|-----------------------------------|---|-----------------------------------|----------|----------------| | | % <i>de</i>
(trans) | % ee
(1 <i>S</i> ,2 <i>S</i>) | % <i>de</i>
(trans) | % ee
(1 <i>S</i> ,2 <i>S</i>) | 2(////// | 4(7000) | | WT | 79 | 13 | 70 | 4 | 9 | 9 | | Mb(H64V) | 91 | 26 | >99 | 65 | 8 | 39 | | Mb(V68A) | 97 | 86 | >99 | 98 | 2 | 12 | | Mb(H64V,V68A) | >99 | 99 | >99 | 99.5 | 0 | 0.5 | | Mb(H64V,V68S) | 98 | 84 | 97 | 83 | 1 | 1 | | Mb(H64V,V68G) | 93 | 99 | >99 | 98 | 6 | 1 | | Mb(H64V,I107W) | 93 | 77 | 93 | 30 | 0 | 47 | | Entry | Product | OD_{600} | Yield ^b | % de | % ee | |-------|----------------------|---------------------|--------------------|-------------------|----------| | 1 | Br 8b | 80 | 69%
(68%) | 99.9 | 99.9 | | 2 | MeO 9b | 80 | 92%
(76%) | 99.9 | 99.9 | | 3 | O ₂ N 10b | 80 | 54%
(43%) | 99.9 | 99.9 | | | \wedge | 40 | 85% | 96 | 31 | | 4 | "CF ₃ | 80 | 88% | 96 ^c | 97^{c} | | | H ₃ C 11b | | (78%) | | | | | H ₃ C | 40 | 76% | 99.8 | 28 | | 5 | //CF ₃ | 80 | >99% | 99.9 ^c | 99.9° | | | 12b | | (82%) | | | | 6 | 13b | 80 | 70%
(58%) | 99.9 | 92 | | 7 | 14b | 40 | >99%
(71%) | 99.9 | 99.9 | R = H, Me (1 equiv.) + $$\begin{bmatrix} CF_3 \\ N_2 \end{bmatrix}$$ $\frac{\text{Mb}(\text{H64V}, \text{V68A})}{\text{whole cells}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RT, 5 hrs}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RT, 5 hrs}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{CF}_{3}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{R}_{\text{Ar}}}{\text$ | Entry | Substrate | Product | Product Mb variant | | % ee
(1R,2R) | |------------------|----------------------|----------------------------------|--|--------------|-----------------| | 1 | CI 7a | CI 7c | Mb(H64V,V68L,L29T) =
RR2 | 99.9 | 83 | | 2 | Br 8a | Br CF ₃ | Mb(H64V,V68L,L29T) =
RR2 | 99.9 | 80 | | 3 | MeO 9a | MeO 9c | Mb(H64V,V68L,L29T) =
RR2 | 98 | 91 | | 4 | O ₂ N 10a | O ₂ N CF ₃ | Mb(H64V,V68L,L29T) = RR2 | 99.9 | 65 | | 5 ^{a,b} | H ₃ C 11a | H ₃ C CF ₃ | Mb(H64V,V68L,L29T) =
RR2 | 99.9 | 85 | | 6 ^{a,b} | CH ₃ 12a | CH ₃ | Mb(H64V,V68L,L29T) =
RR2 | 99.9 | 88 | | 7 ^{a,c} | 13a | CF ₃ | Mb(H64V,V68L,L29T)
= RR2
Mb(H64V,V68L,L29T,I107L)
= RR4 | 99.9
99.9 | 21
58 | | 8 ^{a,c} | S | SULUTION CF3 | Mb(H64V,V68L,L29T) =
RR2 | 99.9 | 92 | #### Conclusions - 1) Developed a biocatalytic strategy for the asymmetric synthesis of trifluoromethyl substituted cyclopropane. - 2) Applicable to a number vinylarene substrates and give high enantioand diastereoselectivity. - 3) Both enantiomers are accessible depending on the mutations of the myoglobin. - 4) First study which demonstrates that a carbene other than α -diazoesters can be used for biocatalytic carbene transfer.