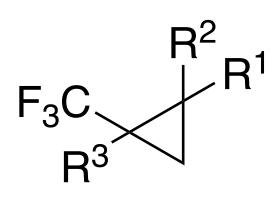

Highly Diastereo- and Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes via Myoglobin-Catalyzed Transfer of Trifluoromethylcarbene


Antonio Tinoco, Viktoria Steck, Vikas Tyagi, and Rudi Fasan J. Am. Chem Soc. 2017, **139**, 5293

Trifluoromethyl cyclopropane derivatives

Conformational Rigidity – important feature in biologically active compounds.

- -CF₃ analogues impart important biological activity
- Increase electrophilicity and decrease nucleophilicity of neighbouring functional groups
- 2) Modifies lipophilicity
- 3) Increase metaboloc stability

Trifluoromethylated cyclopropane is considered to be a bioisostere of fluorinated tert-butyl group

$$CI$$
 N
 N
 N
 N
 S
 F_3C

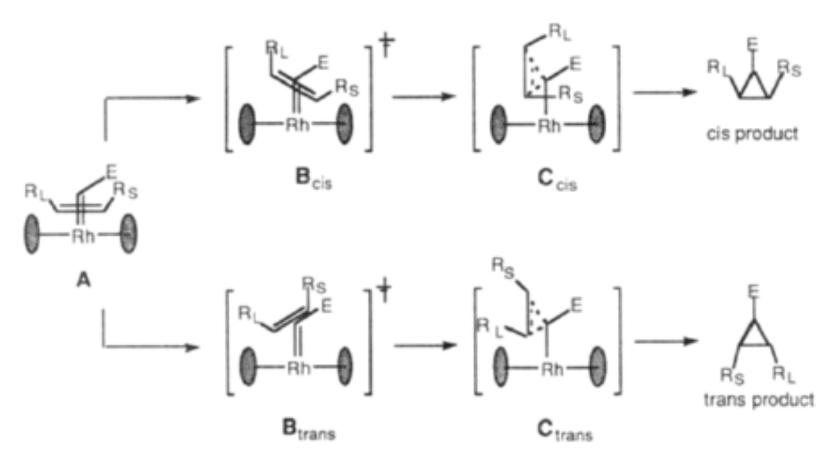
cannabinoid CB₁ receptor antagonist $IC_{50} = 33.5 \text{ nM}$

 $hNa_v 1.7$ channel blocker $IC_{50} = 182 \text{ nM}$

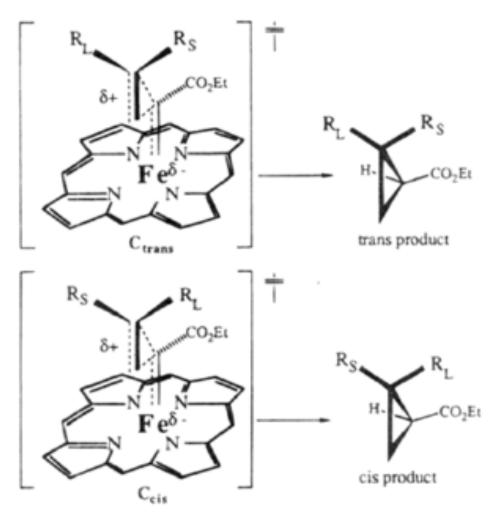
VLA-4 integrin antagonist $IC_{50} = 2 \text{ nM}$

$$F_3C \cap NH_3CI \xrightarrow{NaNO_2} HCI \\ 0^{\circ}C \\ F_3C \cap N_2 \xrightarrow{hv} F_3C \xrightarrow{F_3C} Or \xrightarrow{CF_3} \\ 0^{\circ}C \\$$

$$F_3C$$
 + F_3C 7% F_3C N_2 F_3C F

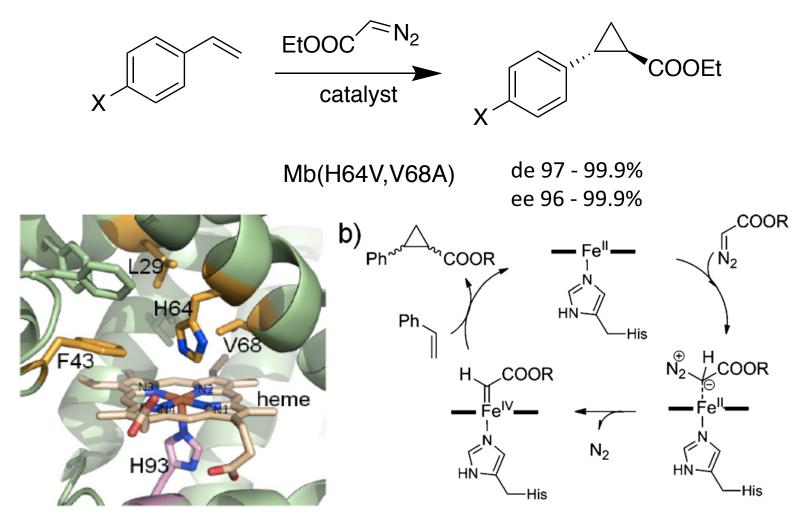

J. Chem. Soc. C. 1967, 1450

Synthesis 2006, 2006, 1701 Angew. Chem. Int. Ed. 2011, **50**, 1101

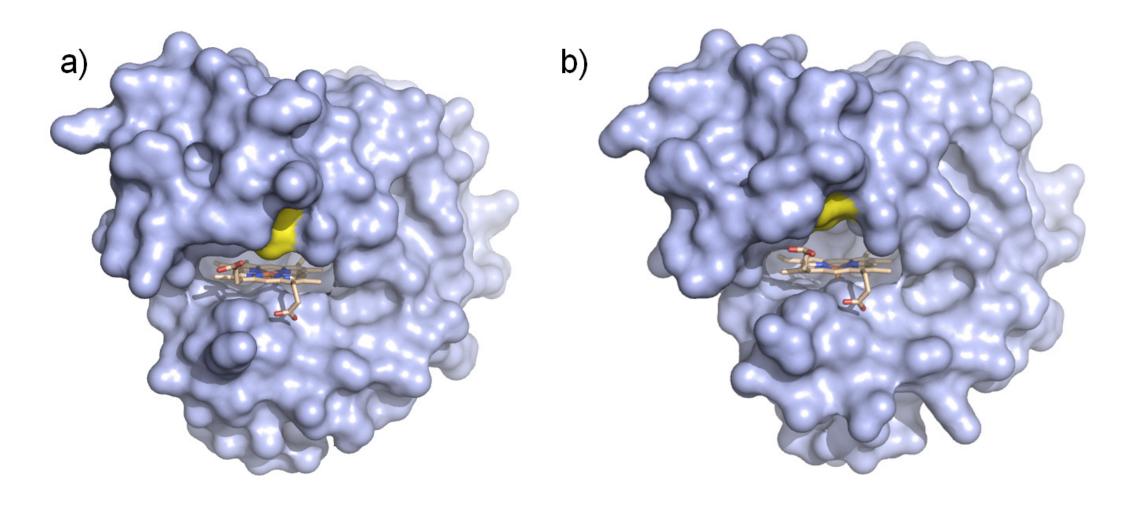

Metal porphyrin catalysed cyclopropanations

$$\begin{array}{c} \xrightarrow{\text{EtOOC} \nearrow N_2} \\ \xrightarrow{\text{catalyst}} \\ \text{Rh - cis} \\ \text{Fe - trans} \end{array}$$

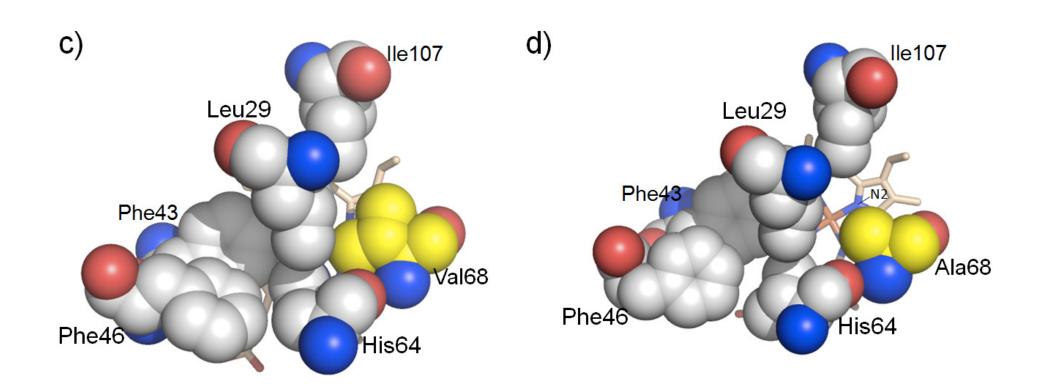
Tetrahedron Lett. 1980, 21, 3489 J. Am. Chem. Soc. 1995, 117, 9194 – 9199

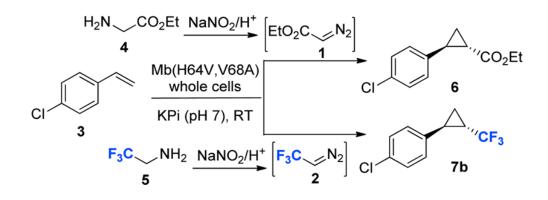


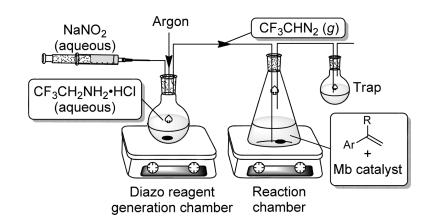
J. Am. Chem. Soc. 1995, 117, 9194 – 9199



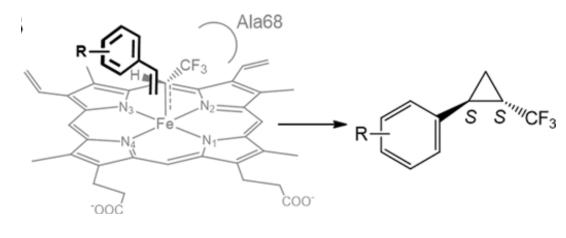
J. Am. Chem. Soc. 1995, 117, 9194 – 9199


Engineered Myoglobin catalysts




Angew. Chem. Int. Ed. 2015, 54, 1744

Angew. Chem. Int. Ed. 2015, 54, 1744



entry	catal.	prod.	equiv 4 or 5 ^b	yield ^c	TON	% de	% ee
1	protein	6	2	4%	180	99.9	99.8
2	cells^d	6	2	47%	560	97.2	99.9
3	cells	6	5	80%	365	99.9	99.8
4	cells	6	10	75%	340	98.5	99.9
5	cells	6	10	>99% ^e	500	99.9	99.9
6	protein	7b	5	22%	1110	98.5	99.9
7	cells	7b	5	92%	520	99.9	99.9
				(67%)			

Mb Variant	<i>p</i> -methoxy-styrene + EDA ^a		<i>p</i> -methoxy-styrene + DTE ^b		∆(%de)	Δ (%ee)
	% <i>de</i> (trans)	% ee (1 <i>S</i> ,2 <i>S</i>)	% <i>de</i> (trans)	% ee (1 <i>S</i> ,2 <i>S</i>)	2(//////	4(7000)
WT	79	13	70	4	9	9
Mb(H64V)	91	26	>99	65	8	39
Mb(V68A)	97	86	>99	98	2	12
Mb(H64V,V68A)	>99	99	>99	99.5	0	0.5
Mb(H64V,V68S)	98	84	97	83	1	1
Mb(H64V,V68G)	93	99	>99	98	6	1
Mb(H64V,I107W)	93	77	93	30	0	47

Entry	Product	OD_{600}	Yield ^b	% de	% ee
1	Br 8b	80	69% (68%)	99.9	99.9
2	MeO 9b	80	92% (76%)	99.9	99.9
3	O ₂ N 10b	80	54% (43%)	99.9	99.9
	\wedge	40	85%	96	31
4	"CF ₃	80	88%	96 ^c	97^{c}
	H ₃ C 11b		(78%)		
	H ₃ C	40	76%	99.8	28
5	//CF ₃	80	>99%	99.9 ^c	99.9°
	12b		(82%)		
6	13b	80	70% (58%)	99.9	92
7	14b	40	>99% (71%)	99.9	99.9

R = H, Me (1 equiv.) +
$$\begin{bmatrix} CF_3 \\ N_2 \end{bmatrix}$$
 $\frac{\text{Mb}(\text{H64V}, \text{V68A})}{\text{whole cells}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RT, 5 hrs}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RT, 5 hrs}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{CF}_{3}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{R}_{\text{Ar}}}{\text{RD}_{\text{Ar}}}$ $\frac{\text{R}_{\text{Ar}}}{\text$

Entry	Substrate	Product	Product Mb variant		% ee (1R,2R)
1	CI 7a	CI 7c	Mb(H64V,V68L,L29T) = RR2	99.9	83
2	Br 8a	Br CF ₃	Mb(H64V,V68L,L29T) = RR2	99.9	80
3	MeO 9a	MeO 9c	Mb(H64V,V68L,L29T) = RR2	98	91
4	O ₂ N 10a	O ₂ N CF ₃	Mb(H64V,V68L,L29T) = RR2	99.9	65
5 ^{a,b}	H ₃ C 11a	H ₃ C CF ₃	Mb(H64V,V68L,L29T) = RR2	99.9	85
6 ^{a,b}	CH ₃ 12a	CH ₃	Mb(H64V,V68L,L29T) = RR2	99.9	88
7 ^{a,c}	13a	CF ₃	Mb(H64V,V68L,L29T) = RR2 Mb(H64V,V68L,L29T,I107L) = RR4	99.9 99.9	21 58
8 ^{a,c}	S	SULUTION CF3	Mb(H64V,V68L,L29T) = RR2	99.9	92

Conclusions

- 1) Developed a biocatalytic strategy for the asymmetric synthesis of trifluoromethyl substituted cyclopropane.
- 2) Applicable to a number vinylarene substrates and give high enantioand diastereoselectivity.
- 3) Both enantiomers are accessible depending on the mutations of the myoglobin.
- 4) First study which demonstrates that a carbene other than α -diazoesters can be used for biocatalytic carbene transfer.